H, 3.41; N, 4.73. Found: C, 36.48; H, 2.91; N, 4.75.
Conversion of 5 to 4 d . A mixture of $220 \mathrm{mg}(5.23 \mathrm{mmol})$ of cyanamide, $1.48 \mathrm{~g}(5.00 \mathrm{mmol})$ of 5 , and $691 \mathrm{mg}(5.00 \mathrm{mmol})$ of anhydrous, powdered $\mathrm{K}_{2} \mathrm{CO}_{3}$ in 15 mL of THF was heated at reflux for 19 h . The reaction mixture was cooled to room temperature and filtered. The solid collected was washed with acetone, and the combined filtrates were evaporated a a reduced pressure to give an oil, which solidified upon trituration with $\mathrm{Et}_{2} \mathrm{O}$. The solid was collected, washed with $\mathrm{Et}_{2} \mathrm{O}$, and suspended in 2.6 mL of 2 N HCl . After the suspension was stirred for 1 h , the solid was collected by filtration and dried under vacuum at room temperature to afford $1.00 \mathrm{~g}(69 \%)$ of $\mathbf{4 d}$ as a white solid, mp $117-119^{\circ} \mathrm{C}$, which was identical with a sample prepared as described above by IR and ${ }^{1} \mathrm{H}$ NMR. ${ }^{13}$

Registry No. 1a, 104667-72-3; 1b, 104667-74-5; 1c, 104667-75-6; 1d, 104692-77-5; 1e, 104667-73-4; 1f, 99453-15-3; 1g.HCl, 99453-18-6; 1h, 104667-78-9; 2, 10191-60-3; 3a, 98-10-2; 3b, 88-19-7; 3c, $70-55-3$; 3d, 6961-82-6; 3e, 1869-24-5; 3f, 5455-59-4; 3g, 7720-45-8; 3h, 105536-22-9; 4a, 104692-80-0; 4b, 104667-66-5; 4c, 104667-67-6; 4d, 104667-65-4; 4e, 104667-64-3; 4f, 99453-14-2; 4g, 99453-16-4; 4h, 104667-70-1; 5, 84346-43-0; cyanamide, 420-04-2.

Supplementary Material Available: Details of reaction scale and stoichiometry and characterization data (physical properties, IR and NMR spectral data, and elemental analyses) for 1 and 4 (4 pages). Ordering information is given on any current masthead page.

X-ray Structure of a Novel [4]Radialene from the Cyclodimerization of an Unsaturated Carbene Derived Pentatetraene ${ }^{1}$

Alan E. Learned, Atta M. Arif, and Peter J. Stang*
Chemistry Department, The University of Utah, Salt Lake City, Utah 84112

Received January 18, 1988
As a consequence of both their considerable strain energy and possible cyclic delocalization via cross conjugation radialenes represent an inherently interesting class of hydrocarbons. ${ }^{2}$ Although both [3]radialene (1) and [4]radialene (2) and a few substituted derivatives are known, ${ }^{2}$

1

2
we are not aware of any X-ray data on this unusual class of hydrocarbons. Hence, we wish to report the first sin-gle-crystal X-ray structure of a novel substituted [4]radialene.
As we reported ${ }^{3}$ recently, trapping of carbene 4 with $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CMe}_{2}$ results in a 47% yield of cumulene 5 , which upon standing at room temperature for several days or heating for a few hours undergoes cyclodimerization to 6 in quantitative yield as shown in Scheme I. Dimer 6 is a stable pale yellow crystalline compound that presumably formed via a thermal $[2 \pi \mathrm{a}+2 \pi \mathrm{~s}]$ cycloaddition analogous to the known ${ }^{4}$ dimerizations of ketenes and allenes.
An ORTEP of $\mathbf{6}$ is given in Figure 1, and the relevant crystal data, bond distances, and bond angles are in Tables

[^0]

Figure 1.
Scheme I

Table I. Summary of Crystallographic Data

molecular formula	$\mathrm{C}_{30} \mathrm{H}_{44}$
molecular weight	404.69
crystal system	tetragonal
space group	$P \overline{4} 2_{1} m(113)$
cell dimensions, \AA	
$\quad a$	$10.792(5)$
$\quad b$	$10.792(4)$
c	$12.022(5)$
volume, \AA^{3}	1400.1
z	2
$d($ calcd $), \mathrm{g} / \mathrm{cm}^{3}$	0.960
crystal dimensions, mm	$0.27 \times 0.25 \times 0.21$
diffractometer	$\mathrm{Syntex} \mathrm{P} \mathrm{\overline{1}}$
radiations, \AA	$(\mathrm{Mo} \mathrm{K} \alpha) 0.71073$
data collection method	$2 \theta: \theta$
scan speed, deg/min	$($ variable) $2.5-8.0$
reflections measured	$659, h(0,14), k(0,14), l(0,18)$
scan range	$K_{\alpha 1}-1.0$ to $K_{\alpha 2}+1.0$
2θ, deg	$2.0-48.0$
total bkdg. time $/ \mathrm{scan}$ time	0.5
no. of reflections between std.	98
total unique data	557
obsd data, $I>3 \sigma I$	227
abs coeff $(\mu), \mathrm{cm}{ }^{-1}$	0.496
no. of variables	51
$R($ averaging	$0.027,0.025$
max shift $/ \mathrm{error}$	0.0
$R(F)$	7.51
$R(F)$	7.72
goodness of fit	1.914
max diff Fourier peak, e $/ \AA^{3}$	0.52

I-III, respectively. The molecule resides on a mirror symmetry so that the carbon atoms $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{9}$,

Table II. Bond Distances (in Angstroms)

atom 1	atom 2	distance ${ }^{\text {a }}$
C1	C1 ${ }^{\prime}$	1.596 (5)
C1	C2	1.50 (2)
C1	C8	1.30 (2)
C2	C2 ${ }^{\prime}$	1.624 (5)
C2	C3	1.29 (2)
C3	C4	1.31 (2)
C4	C5	1.45 (2)
C5	C5 ${ }^{\prime}$	1.54 (1)
C5	C6	1.54 (2)
C5	C7	1.48 (2)
C8	C9	1.435 (2)
C9	C10	1.52 (2)
C9	C11'	1.515 (8)
C9	C11	1.51 (2)

${ }^{a}$ Numbers in parentheses are estimated standard deviations in the least significant digits.

Table III. Bond Angles (in Degrees)

atom 1	atom 2	atom 3	angle ${ }^{\text {a }}$
Cl^{\prime}	C1	C2	90.5 (6)
Cl^{\prime}	C1	C8	134.0 (10)
C2	C1	C8	135.6 (8)
C1	C1'	C2	90.5 (7)
C1	C1'	C8'	133.9 (7)
C1	C2	C2'	89.5 (5)
C1	C2	C3	141.1 (7)
C2	C2	C3	129.0 (10)
Cl^{\prime}	C2	C2	89.5 (6)
C2	C2'	C3'	129.4 (6)
C2	C3	C4	178.0 (10)
C3	C4	C5	147.9 (6)
C3	C4	C5	147.9 (3)
C5	C4	C5 ${ }^{\prime}$	64.2 (8)
C1	C8	C9	130.0 (10)
C8	C9	C10	110.0 (10)
C8	C9	C11'	112.0 (5)
C8	C9	C11	112.0 (8)
C4	C5	C5	57.9 (6)
C4	C5	C6	119.0 (10)
C4	C5	C7	118.0 (10)
C5'	C5	C6	119.0 (10)
C5'	C5	C7	122.0 (10)
C6	C5	C7	112.0 (10)
C4	C5	C5	57.9 (5)
C4	C5	C6'	118.7 (3)
C4	C5	$\mathrm{C} 7{ }^{\prime}$	118.1 (5)
C5	C5	C6'	118.6 (5)
C5	C5'	C7	121.9 (5)
C10	C9	C11'	108.4 (4)
C10	C9	C11	108.4 (7)
C11 ${ }^{\prime}$	C9	C11	106 (1)

${ }^{a}$ Numbers in parentheses are estimated standard deviations in the least significant digits.
and C_{10} are on special positions.
Perusal of the data in Tables II and III reveals some interesting aspects of the structure of 6 . Whereas saturated cyclobutane rings are normally puckered, the ring in 6 is, as predicted, planar. The internal bond angles of the ring are close to the expected 90°. The bond lengths of the cyclobutane ring in 6 are particularly interesting. Two of the bonds are about $1.50 \AA$ or about $0.007 \AA$ shorter than the usual $\mathrm{C}_{\mathrm{sp}} 2-\mathrm{C}_{\mathrm{sp}}{ }^{3}$ length ${ }^{5}$ of $1.507 \AA$, whereas the other two bonds at 1.596 and $1.624 \AA$ are considerably longer. The olefinic double bonds at about $1.30 \AA$ are normal as are the two sets of allenic bonds, compared to the 1.305 \AA bond length ${ }^{6}$ in symmetrically substituted allenes. The remainder of the structural features of 6 are within ex-

[^1]pected normal ranges and are therefore unexceptional. Carbene-derived cumulene cyclodimers have been previously observed. Specifically, Hartzler ${ }^{7}$ reported dimer 8 from tetra-tert-butylhexapentaene 7. Le Noble ${ }^{8}$ and co-workers reported 10 from 9 and we ${ }^{9}$ reported 12 from 11 and 14 from 13 . What is not yet clear is what exactly

controls the mode of cyclodimerizations and why seemingly similar cumulenes such as hexapentaenes 7 and 13 and pentatetraenes such as 5 and 9 result in such different cyclodimers. Differential electron density distributions ${ }^{10}$ in the various cumulenes might account for these results.

Experimental Section

Cumulene ${ }^{1,3} 5(0.191 \mathrm{~g}, 0.95 \mathrm{~mol})$ was dissolved in 2 mL of CDCl_{3} and was placed in a sealed tube under argon. After 12 h of heating at $75^{\circ} \mathrm{C}$ NMR indicated the quantitative conversion of 5 into 6. The CDCl_{3} was removed under reduced pressure, and the residue was recrystallized from degassed pentane to give 0.19 g , $\sim 100 \%$, of pale yellow crystals of $6: \mathrm{mp} 205-207^{\circ} \mathrm{C}$ dec; UV (n-hexane) 237 ($\epsilon 28700$), 224 (29200), 217 (22000), 198 nm (25000); mass spectrum (CI), m / z (relative intensity) 404 (M^{+}, 100), 347 (13), 57 (56); IR (KBr) 2940, 2920, 1985, 1440, 1375, 1360, $1100,870,805 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.10(\mathrm{~s}, 18), 1.26(\mathrm{~s}, 12)$, 1.28 (s, 12), $5.64(\mathrm{~s}, 2) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 178.7,138.2,126.2$, 111.0, 102.5, 32.3, 32.0, 29.8, 22.1, 21.1. Anal. Calcd $\mathrm{C}_{30} \mathrm{H}_{44}: \mathrm{C}$, 89.03; H, 10.96. Found C, 89.25, H, 10.80. Structure determination was carried out on a suitable single crystal with a Syntex P1 diffractometer, and the data are summarized in Tables I-III.

Acknowledgment. We are grateful to the NSF (CHE 84-19099) for financial support.

Supplementary Material Available: A listing of atomic coordinates and displacement parameters (3 pages); a listing of structure factors (3 pages). Ordering information is given on any current masthead page.

[^2]
[^0]: (1) Abstracted from the Ph.D. Dissertation of A. E. Learned, The University of Utah, 1987.
 (2) Greenberg, A.; Liebman, J. F. Strained Organic Molecules; Academic: New York, 1978.
 (3) Stang, P. J.; Learned, A. E. J. Chem. Soc., Chem. Commun. 1988, 301.
 (4) Landor, S. R. The Chemistry of Allenes; Academic: New York, 1982; Vol. 3.

[^1]: (5) Allen, F. H.; Kennard, O.; Taylor, R. Acc. Chem. Res. 1983, 16, 146. (6) Irngartinger, H.; Götzmann, W. Angew. Chem., Int. Ed. Engl. 1986, 25, 340.

[^2]: (7) Hartzler, H. D. J. Am. Chem. Soc. 1971, 93, 4527.
 (8) Basak, S.; Srivastava, S.; Le Noble, W. J. J. Org. Chem. 1987, 52, 5095. Le Noble, W. J.; Basak, S.; Srivastava, S. J. Am. Chem. Soc. 1981, 103, 4638.
 (9) Kaftory, M.; Agmon, I.; Ladika, M.; Stang, P. J. J. Am. Chem. Soc. 1987, 109, 782.
 (10) Berkovitch-Yellin, Z.; Leiserowitz, L. Acta Crystallogr., Sect. B 1977, B33, 3657.

